Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
Neuromuscul Disord ; 35: 29-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219297

RESUMO

Patients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists. In one biopsy from a patient with a rare TPM3 pathogenic variant, cores and minicores were observed, an unusual finding in TPM3-caused myopathy. The variants alter conserved contact sites between tropomyosin and actin.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Humanos , Feminino , Músculo Esquelético/patologia , Tropomiosina/genética , Doenças Musculares/patologia , Hipertonia Muscular/patologia , Fenótipo , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Mutação
2.
Genes Chromosomes Cancer ; 63(1): e23207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787425

RESUMO

Substantial progress has been made in understanding the molecular pathways associated with vascular tumors over the last two decades. In addition to mutations and copy number aberrations, fusions have emerged as significant contributors to the pathogenesis of a notable subset of vascular tumors. In this report, we present a case of an unusual intradermal vascular tumor with epithelioid cytomorphology. Immunohistochemistry revealed diffuse positivity for CD31, ERG and Factor VIII, supporting its endothelial lineage. RNA sequencing (ArcherFusion Plex) revealed the presence of an in-frame fusion between the genes TPM3 Exon 8 and ALK Exon 20. Immunohistochemistry confirmed ALK expression by the endothelial cells. To our knowledge, this is the first documented case of a vascular tumor harboring an ALK fusion. It may fall within the spectrum of epithelioid hemangiomas; nevertheless, we cannot definitively exclude the possibility of it being a distinct and potentially unique benign entity on its own.


Assuntos
Hemangioma , Neoplasias Cutâneas , Neoplasias Vasculares , Humanos , Quinase do Linfoma Anaplásico/genética , Células Endoteliais/patologia , Neoplasias Cutâneas/genética , Tropomiosina/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003336

RESUMO

A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.


Assuntos
Contratura , Miopatias da Nemalina , Humanos , Pré-Escolar , Actinas/genética , Tropomiosina/genética , Tropomiosina/química , Debilidade Muscular/genética , Debilidade Muscular/patologia , Miopatias da Nemalina/genética , Mutação , Miosinas/genética , Contratura/patologia , Fenótipo , Troponina/genética , Músculo Esquelético/patologia
4.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003645

RESUMO

Uniform actin filament length is required for synchronized contraction of skeletal muscle. In myopathies linked to mutations in tropomyosin (Tpm) genes, irregular thin filaments are a common feature, which may result from defects in length maintenance mechanisms. The current work investigated the effects of the myopathy-causing p.R91C variant in Tpm3.12, a tropomyosin isoform expressed in slow-twitch muscle fibers, on the regulation of actin severing and depolymerization by cofilin-2. The affinity of cofilin-2 for F-actin was not significantly changed by either Tpm3.12 or Tpm3.12-R91C, though it increased two-fold in the presence of troponin (without Ca2+). Saturation of the filament with cofilin-2 removed both Tpm variants from the filament, although Tpm3.12-R91C was more resistant. In the presence of troponin (±Ca2+), Tpm remained on the filament, even at high cofilin-2 concentrations. Both Tpm3.12 variants inhibited filament severing and depolymerization by cofilin-2. However, the inhibition was more efficient in the presence of Tpm3.12-R91C, indicating that the pathogenic variant impaired cofilin-2-dependent actin filament turnover. Troponin (±Ca2+) further inhibited but did not completely stop cofilin-2-dependent actin severing and depolymerization.


Assuntos
Doenças Musculares , Tropomiosina , Humanos , Citoesqueleto de Actina , Actinas/genética , Cofilina 2/genética , Doenças Musculares/genética , Mutação , Tropomiosina/genética , Troponina/genética
5.
Skelet Muscle ; 13(1): 18, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936227

RESUMO

The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.


Assuntos
Doenças Musculares , Tropomiosina , Humanos , Tropomiosina/genética , Tropomiosina/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Fibras Musculares Esqueléticas/metabolismo , Mutação
6.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895089

RESUMO

Tropomyosin is the major and predominant allergen among shellfish. This study developed an ultrasensitive immuno-PCR method for the quantification of crustacean tropomyosin in foods. The method couples sandwich ELISA with the real-time PCR (rtPCR) amplification of marker DNAs. Monoclonal anti-TPM antibody was the capture antibody, polyclonal rabbit anti-shrimp tropomyosin antibody was the detection antibody, while natural shrimp tropomyosin served as the standard. A double-stranded amino-DNA was covalently conjugated to a secondary anti-rabbit antibody and subsequently amplified and quantified via rtPCR. The quantification sensitivity of immuno-PCR was 20-fold higher than analogous ELISA, with LOQ 19.8 pg/mL. The developed immuno-PCR method is highly specific for the detection of crustacean tropomyosin and is highly precise in a broad concentration range. Tropomyosin recovery in the spiked vegetable soup was 87.7-115.6%. Crustacean tropomyosin was also quantified in commercial food products. The reported immuno-PCR assay is the most sensitive method for the quantification of crustacean tropomyosin and is the first immuno-PCR-based assay for the quantification of food allergen and food protein in general. The described method could be easily adapted for the specific and ultrasensitive immuno-PCR-based detection of traces of any food allergen that is currently being quantified with ELISA, which is of critical importance for people with food allergies.


Assuntos
Hipersensibilidade Alimentar , Tropomiosina , Humanos , Animais , Coelhos , Tropomiosina/genética , Crustáceos , Frutos do Mar , Alimentos Marinhos/análise , Alérgenos , Hipersensibilidade Alimentar/diagnóstico
7.
J Agric Food Chem ; 71(44): 16739-16751, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37897700

RESUMO

Although tropomyosin has been identified as a major allergen in Antarctic krill, the digestive fate of Antarctic krill tropomyosin and its relationship with allergenicity are unknown. In this study, Antarctic krill tropomyosin was administered to BALB/c mice via both gavage and intraperitoneal injection to explore its sensitizing and eliciting capacity, and its digestion products were analyzed for structural changes and digestion-resistant linear epitopes. Mice gavaged with tropomyosin exhibited lower levels of specific IgE and IgG1, mast cell degranulation, vascular permeability, and anaphylaxis symptoms than those in the intraperitoneal injection group. This may be due to the destruction of macromolecular aggregates, loose expansion of the tertiary structure, complete disappearance of α-helix, and significant changes in molecular force upon the digestion of tropomyosin. Nevertheless, the intragastric administration of Antarctic krill tropomyosin still triggered strong allergic reactions, which was attributed to the existence of seven digestion-resistant linear epitopes (Glu26-His44, Thr111-Arg125, Glu157-Glu164, Glu177-Gly186, Val209-Ile225, Arg244-Arg255, and Val261-Ile270).


Assuntos
Euphausiacea , Animais , Camundongos , Euphausiacea/química , Tropomiosina/genética , Alérgenos/genética , Alimentos Marinhos , Digestão , Regiões Antárticas
8.
Cancer ; 129(23): 3772-3782, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769113

RESUMO

BACKGROUND: Larotrectinib, a first-in-class, highly selective tropomyosin receptor kinase (TRK) inhibitor, has demonstrated efficacy in adult and pediatric patients with various solid tumors harboring NTRK gene fusions. This subset analysis focuses on the efficacy and safety of larotrectinib in an expanded cohort of adult patients with TRK fusion sarcomas. METHODS: Patients (≥18 years old) with sarcomas harboring NTRK gene fusions were identified from three clinical trials. Patients received larotrectinib 100 mg orally twice daily. Response was investigator-assessed per RECIST v1.1. Data cutoff was July 20, 2021. RESULTS: At the data cutoff, 36 adult patients with TRK fusion sarcomas had initiated larotrectinib therapy: two (6%) patients had bone sarcomas, four (11%) had gastrointestinal stromal tumors, and 30 (83%) had soft tissue sarcomas. All patients were evaluable for response and demonstrated an objective response rate of 58% (95% confidence interval, 41-74). Patients responded well to larotrectinib regardless of number of prior lines of therapy. Adverse events (AEs) were mostly grade 1/2. Grade 3 treatment-emergent AEs (TEAEs) occurred in 15 (42%) patients. There were no grade 4 TEAEs. Two grade 5 TEAEs were reported, neither of which were considered related to larotrectinib. Four (11%) patients permanently discontinued treatment due to TEAEs. CONCLUSIONS: Larotrectinib demonstrated robust and durable responses, extended survival benefit, and a favorable safety profile in adult patients with TRK fusion sarcomas with longer follow-up. These results continue to demonstrate that testing for NTRK gene fusions should be incorporated into the clinical management of adult patients with various types of sarcomas. PLAIN LANGUAGE SUMMARY: Tropomyosin receptor kinase (TRK) fusion proteins result from translocations involving the NTRK gene and cause cancer in a range of tumor types. Larotrectinib is an agent that specifically targets TRK fusion proteins and is approved for the treatment of patients with TRK fusion cancer. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. Over half of patients had a durable response to larotrectinib, with no unexpected side effects. These results show that larotrectinib is safe and effective in adult patients with TRK fusion sarcomas.


Assuntos
Neoplasias Ósseas , Neoplasias , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Adulto , Adolescente , Tropomiosina/genética , Tropomiosina/uso terapêutico , Sarcoma/tratamento farmacológico , Sarcoma/genética , Neoplasias/tratamento farmacológico , Pirazóis/efeitos adversos , Neoplasias de Tecidos Moles/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Fusão Gênica , Proteínas de Fusão Oncogênica/genética , Neoplasias Ósseas/tratamento farmacológico , Receptor trkA/genética
9.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686101

RESUMO

Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.


Assuntos
Neoplasias , Tropomiosina , Humanos , Tropomiosina/genética , Neoplasias/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Actinas , Microambiente Tumoral
10.
J Neuromuscul Dis ; 10(5): 977-984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393515

RESUMO

BACKGROUND: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript. OBJECTIVES: The aim of the study was to identify the disease-causing gene and variants in a Finnish patient with an unusual form of nemaline myopathy. METHODS: The genetic analyses included Sanger sequencing, whole-exome sequencing, targeted array-CGH, and linked-read whole genome sequencing. RNA sequencing was done on total RNA extracted from cultured myoblasts and myotubes of the patient and controls. TPM3 protein expression was assessed by Western blot analysis. The diagnostic muscle biopsy was analyzed by routine histopathological methods. RESULTS: The patient had poor head control and failure to thrive, but no hypomimia, and his upper limbs were clearly weaker than his lower limbs, features which in combination with the histopathology suggested TPM3-caused nemaline myopathy. Muscle histopathology showed increased fiber size variation and numerous nemaline bodies predominantly in small type 1 fibers. The patient was found to be compound heterozygous for two splice-site variants in intron 1a of TPM3: NM_152263.4:c.117+2_5delTAGG, deleting the donor splice site of intron 1a, and NM_152263.4:c.117 + 164 C>T, which activates an acceptor splice site preceding a non-coding exon in intron 1a. RNA sequencing revealed inclusion of intron 1a and the non-coding exon in the transcripts, resulting in early premature stop codons. Western blot using patient myoblasts revealed markedly reduced levels of the TPM3 protein. CONCLUSIONS: Novel biallelic splice-site variants were shown to markedly reduce TPM3 protein expression. The effects of the variants on splicing were readily revealed by RNA sequencing, demonstrating the power of the method.


Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Sequenciamento do Exoma , Tropomiosina/genética , Tropomiosina/metabolismo , Músculo Esquelético/patologia , Análise de Sequência de RNA
11.
Stem Cell Res ; 71: 103161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422949

RESUMO

The CHOPWT17_TPM1KOc28 iPSC line was generated to interrogate the functions of Tropomyosin 1 (TPM1) in primary human cell development. This line was reprogrammed from a previously published wild type control iPSC line.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tropomiosina , Humanos , Tropomiosina/genética , Tropomiosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral
12.
J Muscle Res Cell Motil ; 44(3): 179-192, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480427

RESUMO

Actin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease. Our structure of the zebrafish thin filament reveals the molecular interactions between the constituent proteins, showing that the fundamental organisation of the complex is the same as that reported in the human reconstituted thin filament. A reconstruction of zebrafish cardiac F-actin demonstrates no deviations from human cardiac actin over an extended length of 14 actin subunits. Modelling zebrafish homology models into our maps enabled us to compare, in detail, the similarity with human models. The structural similarities of troponin-T in particular, a region known to contain a hypertrophic cardiomyopathy 'hotspot', confirm the suitability of zebrafish to study these disease-causing mutations.


Assuntos
Cardiomiopatia Hipertrófica , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Actinas/metabolismo , Microscopia Crioeletrônica , Citoesqueleto de Actina/metabolismo , Tropomiosina/genética , Cardiomiopatia Hipertrófica/genética , Cálcio/metabolismo
13.
BMC Cancer ; 23(1): 557, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328795

RESUMO

BACKGROUND: Primary liver cancer is a malignant tumour of the digestive system, ranking second in cancer mortality in China. In different types of cancer, such as liver cancer, microRNAs (miRNAs) have been shown to be dysregulated. However, little is known about the role of miR-5195-3p in insulin-resistant liver cancer. METHODS AND RESULTS: In this study, in vitro and in vivo experiments were conducted to identify the altered biological behaviour of insulin-resistant hepatoma cells (HepG2/IR), and we proved that HepG2/IR cells had stronger malignant biological behaviour. Functional experiments showed that enhanced expression of miR-5195-3p could inhibit the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and chemoresistance of HepG2/IR cells, while impaired expression of miR-5195-3p in HepG2 cells resulted in the opposite effects. Bioinformatics prediction and dual luciferase reporter gene assays proved that SOX9 and TPM4 were the target genes of miR-5195-3p in hepatoma cells. CONCLUSIONS: In conclusion, our study demonstrated that miR-5195-3p plays a critical role in insulin-resistant hepatoma cells and might be a potential therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Insulina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
14.
JAMA Oncol ; 9(8): 1132-1141, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289450

RESUMO

Importance: Thyroid epithelial malignant neoplasms include differentiated thyroid carcinomas (papillary, follicular, and oncocytic), follicular-derived high-grade thyroid carcinomas, and anaplastic and medullary thyroid carcinomas, with additional rarer subtypes. The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions has fostered developments in precision oncology, with the approval of tropomyosin receptor kinase inhibitors (larotrectinib and entrectinib) for patients with solid tumors, including advanced thyroid carcinomas, harboring NTRK gene fusions. Observations: The relative rarity and diagnostic complexity of NTRK gene fusion events in thyroid carcinoma present several challenges for clinicians, including variable access to robust methodologies for comprehensive NTRK fusion testing and poorly defined algorithms of when to test for such molecular alterations. To address these issues in thyroid carcinoma, 3 consensus meetings of expert oncologists and pathologists were convened to discuss diagnostic challenges and propose a rational diagnostic algorithm. Per the proposed diagnostic algorithm, NTRK gene fusion testing should be considered as part of the initial workup for patients with unresectable, advanced, or high-risk disease as well as following the development of radioiodine-refractory or metastatic disease; testing by DNA or RNA next-generation sequencing is recommended. Detecting the presence of NTRK gene fusions is important to identify patients eligible to receive tropomyosin receptor kinase inhibitor therapy. Conclusions and Relevance: This review provides practical guidance for optimal integration of gene fusion testing, including NTRK gene fusion testing, to inform the clinical management in patients with thyroid carcinoma.


Assuntos
Neoplasias , Neoplasias da Glândula Tireoide , Humanos , Neoplasias/tratamento farmacológico , Receptor trkA/genética , Receptor trkA/uso terapêutico , Tropomiosina/genética , Tropomiosina/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Proteínas de Fusão Oncogênica/genética , Medicina de Precisão , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Fusão Gênica , Inibidores de Proteínas Quinases/uso terapêutico
15.
BMC Neurol ; 23(1): 181, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147571

RESUMO

BACKGROUND: We report a patient with a novel c.737 C > T variant (p.Ser246Leu) of the TPM3 gene presenting with adult-onset distal myopathy. CASE PRESENTATION: A 35-year-old Chinese male patient presented with a history of progressive finger weakness. Physical examination revealed differential finger extension weakness, together with predominant finger abduction, elbow flexion, ankle dorsiflexion and toe extension weakness. Muscle MRI showed disproportionate fatty infiltration of the glutei, sartorius and extensor digitorum longus muscles without significant wasting. Muscle biopsy and ultrastructural examination showed a non-specific myopathic pattern without nemaline or cap inclusions. Genetic sequencing revealed a novel heterozygous p.Ser246Leu variant (c.737C>T) of the TPM3 gene which is predicted to be pathogenic. This variant is located in the area of the TPM3 gene where the protein product interacts with actin at position Asp25 of actin. Mutations of TPM3 in these loci have been shown to alter the sensitivity of thin filaments to the influx of calcium ions. CONCLUSION: This report further expands the phenotypic spectrum of myopathies associated with TPM3 mutations, as mutations in TPM3 had not previously been reported with adult-onset distal myopathy. We also discuss the interpretation of variants of unknown significance in patients with TPM3 mutations and summarise the typical muscle MRI findings of patients with TPM3 mutations.


Assuntos
Miopatias Distais , Tropomiosina , Masculino , Humanos , Adulto , Tropomiosina/genética , Tropomiosina/metabolismo , Miopatias Distais/patologia , Actinas/genética , Músculo Esquelético/patologia , Mutação , Debilidade Muscular , Paresia/patologia
16.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176047

RESUMO

In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.


Assuntos
Actinas , Cálcio , Animais , Ratos , Suínos , Actinas/química , Cálcio/análise , Tropomiosina/genética , Tropomiosina/química , Citoesqueleto de Actina/química , Miosinas/análise
17.
Front Immunol ; 14: 1148056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993958

RESUMO

Objective: To investigate the function of tropomyosin 4 (TPM4) using pan-cancer data, especially in gastric cancer (GC), using comprehensive bioinformatics analysis and molecular experiments. Methods: We used UCSC Xena, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), TIMER2.0, GEPIA, cBioPortal, Xiantao tool, and UALCAN websites and databases for the extraction of pan-cancer data on TPM4. TPM4 expression was investigated with respect to prognosis, genetic alterations, epigenetic alterations, and immune infiltration. RNA22, miRWalk, miRDB, Starbase 2.0, and Cytoscape were used for identifying and constructing the regulatory networks of lncRNAs, miRNAs, and TPM4 in GC. Data from GSCALite, drug bank databases, and Connectivity Map (CMap) were used to analyze the sensitivity of drugs dependent on TPM4 expression. Gene Ontology (GO), enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG), wound healing assays, and (Matrigel) transwell experiments were used to investigate the biological functions of TPM4 in GC. Result: The findings of the comprehensive pan-cancer analysis revealed that TPM4 has a certain diagnostic and prognosis value in most cancers. Alterations in the expression of TPM4, including duplications and deep mutations, and epigenetic alterations revealed that TPM4 expression is related to the expression of DNA methylation inhibitors and RNA methylation regulators at high concentrations. Besides, TPM4 expression was found to correlate with immune cell infiltration, immune checkpoint (ICP) gene expression, the tumor mutational burden (TMB), and microsatellite instability (MSI). Neoantigens (NEO) were also found to influence its response to immunotherapy. A lncRNA-miRNA -TPM4 network was found to regulate GC development and progression. TPM4 expression was related to docetaxel,5-fluorouracil, and eight small molecular targeted drugs sensitivity. Gene function enrichment analyses revealed that genes that were co-expressed with TPM4 were enriched within the extracellular matrix (ECM)-related pathways. Wound-healing and (Matrigel) transwell assays revealed that TPM4 promotes cell migration and invasion. TPM4, as an oncogene, plays a biological role, perhaps via ECM remodeling in GC. Conclusions: TPM4 is a prospective marker for the diagnosis, treatment outcome, immunology, chemotherapy, and small molecular drugs targeted for pan-cancer treatment, including GC treatment. The lncRNA-miRNA-TPM4network regulates the mechanism underlying GC progression. TPM4 may facilitate the invasion and migration of GC cells, possibly through ECM remodeling.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Tropomiosina , Humanos , Proteínas do Citoesqueleto , Estudos Prospectivos , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Tropomiosina/genética
18.
J Mol Cell Cardiol ; 176: 58-67, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739943

RESUMO

Dilated cardiomyopathy (DCM) is a leading cause of heart failure and a major indicator for heart transplant. Human genetic studies have identified over a thousand causal mutations for DCM in genes involved in a variety of cellular processes, including sarcomeric contraction. A substantial clinical challenge is determining the pathogenicity of novel variants in disease-associated genes. This challenge of connecting genotype and phenotype has frustrated attempts to develop effective, mechanism-based treatments for patients. Here, we identified a de novo mutation (T237S) in TPM1, the gene that encodes the thin filament protein tropomyosin, in a patient with DCM and conducted in vitro experiments to characterize the pathogenicity of this novel variant. We expressed recombinant mutant protein, reconstituted it into thin filaments, and examined the effects of the mutation on thin filament function. We show that the mutation reduces the calcium sensitivity of thin filament activation, as previously seen for known pathogenic mutations. Mechanistically, this shift is due to mutation-induced changes in tropomyosin positioning along the thin filament. We demonstrate that the thin filament activator omecamtiv mecarbil restores the calcium sensitivity of thin filaments regulated by the mutant tropomyosin, which lays the foundation for additional experiments to explore the therapeutic potential of this drug for patients harboring the T237S mutation. Taken together, our results suggest that the TPM1 T237S mutation is likely pathogenic and demonstrate how functional in vitro characterization of pathogenic protein variants in the lab might guide precision medicine in the clinic.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/patologia , Tropomiosina/genética , Tropomiosina/metabolismo , Cálcio/metabolismo , Citoesqueleto de Actina/metabolismo , Mutação/genética
19.
BMC Neurol ; 23(1): 17, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639743

RESUMO

BACKGROUND: Tropomyosin 4 (TPM4), a member of the tropomyosin family, is aberrantly expressed and plays an important role in a variety of cancers. However, studies on TPM4 in glioma patients are currently lacking. OBJECTIVE: Our study aimed to evaluate the diagnostic and prognostic characteristics of TPM4 in glioma and its correlation with immune infiltration. METHODS: Bioinformatic analysis was performed to determine whether TPM4 has diagnostic and prognostic value for glioma. The following databases and analytical tools were used to explore the clinical significance of TPM4 in glioma: TCGA, GTEx, GEO, STRING, and TISIDB. RESULTS: Our study showed that the mRNA and protein expression levels of TPM4 were significantly higher in glioma than in healthy brain tissue. Kaplan-Meier analysis indicated that high expression of TPM4 in glioma correlated with poor prognosis. Univariate Cox analysis indicated that the high expression level of TPM4 in glioma was an independent prognostic characteristic for low overall survival (OS). The areas under the 1-year survival ROC, 2-year survival ROC, and 3-year survival ROC were all greater than 0.8. GO and KEGG enrichment analysis and GSEA showed that humoral immune response and cytokine receptor interaction were significantly enriched in the TPM4 high expression group, where M phase of the cell cycle, neutrophil degranulation, signaling by interleukins, and signaling by rho GTPases were significantly enriched. Furthermore, according to the analysis of immune cell infiltration, TPM4 was associated with tumor infiltration of a variety of immune cells. CONCLUSIONS: In conclusion, our study suggests that TPM4 may be an effective prognostic biomarker for glioma patients, providing new ideas and research directions for glioma research.


Assuntos
Glioma , Tropomiosina , Humanos , Tropomiosina/genética , Glioma/genética , Prognóstico , Encéfalo , Relevância Clínica
20.
Histol Histopathol ; 38(6): 669-680, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36102257

RESUMO

BACKGROUND: Tropomyosin 2 (TPM2), a member of the actin filament binding protein family, plays distinct roles in the progression of different cancer types. Until now, there has been no study reporting TPM2 expression nor its function in lung adenocarcinoma (LUAD). METHODS: In the present study, we examined the expression profile of TPM2 by immunohistochemistry (IHC). The clinical significance of TPM2 was assessed by univariate and multivariate analyses. Function of TPM2 in LUAD was evaluated by knockdown and overexpression strategies in three LUAD cell lines, followed by proliferation and invasion assays. Xenografts were conducted in nude mice to further validate the tumor-related role of TPM2. RESULTS: Our results showed that TPM2 was downregulated in LUAD specimens and the low expression of TPM2 was associated with poor outcomes of LUAD patients. Overexpressing TPM2 inhibited cell proliferation and invasion of LUAD cell lines, while silencing TPM2 exerted the opposite effects. The effects of TPM2 in LUAD were further confirmed by xenograft assays. CONCLUSIONS: Our results indicated that TPM2 exerted an anti-oncogenic role in LUAD via inhibiting tumor progression, thus providing a novel direction for the prognostic prediction and disease treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Prognóstico , Tropomiosina/genética , Tropomiosina/metabolismo , Camundongos Nus , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Biomarcadores , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...